Copied to
clipboard

G = C28.C23order 224 = 25·7

15th non-split extension by C28 of C23 acting via C23/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C28.19D4, Q8.6D14, C28.15C23, D28.10C22, Dic14.9C22, Q8⋊D75C2, (C2×Q8)⋊2D7, (Q8×C14)⋊2C2, C7⋊Q165C2, C7⋊C8.3C22, C4○D28.5C2, (C2×C4).20D14, C14.54(C2×D4), (C2×C14).42D4, C74(C8.C22), C4.Dic77C2, C4.17(C7⋊D4), C4.15(C22×D7), (C7×Q8).6C22, (C2×C28).37C22, C22.11(C7⋊D4), C2.18(C2×C7⋊D4), SmallGroup(224,137)

Series: Derived Chief Lower central Upper central

C1C28 — C28.C23
C1C7C14C28D28C4○D28 — C28.C23
C7C14C28 — C28.C23
C1C2C2×C4C2×Q8

Generators and relations for C28.C23
 G = < a,b,c,d | a28=b2=1, c2=d2=a14, bab=a-1, ac=ca, dad-1=a15, bc=cb, dbd-1=a21b, dcd-1=a14c >

Subgroups: 222 in 60 conjugacy classes, 29 normal (19 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, Q8, Q8, D7, C14, C14, M4(2), SD16, Q16, C2×Q8, C4○D4, Dic7, C28, C28, D14, C2×C14, C8.C22, C7⋊C8, Dic14, C4×D7, D28, C7⋊D4, C2×C28, C2×C28, C7×Q8, C7×Q8, C4.Dic7, Q8⋊D7, C7⋊Q16, C4○D28, Q8×C14, C28.C23
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, D14, C8.C22, C7⋊D4, C22×D7, C2×C7⋊D4, C28.C23

Smallest permutation representation of C28.C23
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(2 28)(3 27)(4 26)(5 25)(6 24)(7 23)(8 22)(9 21)(10 20)(11 19)(12 18)(13 17)(14 16)(29 36)(30 35)(31 34)(32 33)(37 56)(38 55)(39 54)(40 53)(41 52)(42 51)(43 50)(44 49)(45 48)(46 47)(57 73)(58 72)(59 71)(60 70)(61 69)(62 68)(63 67)(64 66)(74 84)(75 83)(76 82)(77 81)(78 80)(85 106)(86 105)(87 104)(88 103)(89 102)(90 101)(91 100)(92 99)(93 98)(94 97)(95 96)(107 112)(108 111)(109 110)
(1 65 15 79)(2 66 16 80)(3 67 17 81)(4 68 18 82)(5 69 19 83)(6 70 20 84)(7 71 21 57)(8 72 22 58)(9 73 23 59)(10 74 24 60)(11 75 25 61)(12 76 26 62)(13 77 27 63)(14 78 28 64)(29 106 43 92)(30 107 44 93)(31 108 45 94)(32 109 46 95)(33 110 47 96)(34 111 48 97)(35 112 49 98)(36 85 50 99)(37 86 51 100)(38 87 52 101)(39 88 53 102)(40 89 54 103)(41 90 55 104)(42 91 56 105)
(1 36 15 50)(2 51 16 37)(3 38 17 52)(4 53 18 39)(5 40 19 54)(6 55 20 41)(7 42 21 56)(8 29 22 43)(9 44 23 30)(10 31 24 45)(11 46 25 32)(12 33 26 47)(13 48 27 34)(14 35 28 49)(57 91 71 105)(58 106 72 92)(59 93 73 107)(60 108 74 94)(61 95 75 109)(62 110 76 96)(63 97 77 111)(64 112 78 98)(65 99 79 85)(66 86 80 100)(67 101 81 87)(68 88 82 102)(69 103 83 89)(70 90 84 104)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (2,28)(3,27)(4,26)(5,25)(6,24)(7,23)(8,22)(9,21)(10,20)(11,19)(12,18)(13,17)(14,16)(29,36)(30,35)(31,34)(32,33)(37,56)(38,55)(39,54)(40,53)(41,52)(42,51)(43,50)(44,49)(45,48)(46,47)(57,73)(58,72)(59,71)(60,70)(61,69)(62,68)(63,67)(64,66)(74,84)(75,83)(76,82)(77,81)(78,80)(85,106)(86,105)(87,104)(88,103)(89,102)(90,101)(91,100)(92,99)(93,98)(94,97)(95,96)(107,112)(108,111)(109,110), (1,65,15,79)(2,66,16,80)(3,67,17,81)(4,68,18,82)(5,69,19,83)(6,70,20,84)(7,71,21,57)(8,72,22,58)(9,73,23,59)(10,74,24,60)(11,75,25,61)(12,76,26,62)(13,77,27,63)(14,78,28,64)(29,106,43,92)(30,107,44,93)(31,108,45,94)(32,109,46,95)(33,110,47,96)(34,111,48,97)(35,112,49,98)(36,85,50,99)(37,86,51,100)(38,87,52,101)(39,88,53,102)(40,89,54,103)(41,90,55,104)(42,91,56,105), (1,36,15,50)(2,51,16,37)(3,38,17,52)(4,53,18,39)(5,40,19,54)(6,55,20,41)(7,42,21,56)(8,29,22,43)(9,44,23,30)(10,31,24,45)(11,46,25,32)(12,33,26,47)(13,48,27,34)(14,35,28,49)(57,91,71,105)(58,106,72,92)(59,93,73,107)(60,108,74,94)(61,95,75,109)(62,110,76,96)(63,97,77,111)(64,112,78,98)(65,99,79,85)(66,86,80,100)(67,101,81,87)(68,88,82,102)(69,103,83,89)(70,90,84,104)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (2,28)(3,27)(4,26)(5,25)(6,24)(7,23)(8,22)(9,21)(10,20)(11,19)(12,18)(13,17)(14,16)(29,36)(30,35)(31,34)(32,33)(37,56)(38,55)(39,54)(40,53)(41,52)(42,51)(43,50)(44,49)(45,48)(46,47)(57,73)(58,72)(59,71)(60,70)(61,69)(62,68)(63,67)(64,66)(74,84)(75,83)(76,82)(77,81)(78,80)(85,106)(86,105)(87,104)(88,103)(89,102)(90,101)(91,100)(92,99)(93,98)(94,97)(95,96)(107,112)(108,111)(109,110), (1,65,15,79)(2,66,16,80)(3,67,17,81)(4,68,18,82)(5,69,19,83)(6,70,20,84)(7,71,21,57)(8,72,22,58)(9,73,23,59)(10,74,24,60)(11,75,25,61)(12,76,26,62)(13,77,27,63)(14,78,28,64)(29,106,43,92)(30,107,44,93)(31,108,45,94)(32,109,46,95)(33,110,47,96)(34,111,48,97)(35,112,49,98)(36,85,50,99)(37,86,51,100)(38,87,52,101)(39,88,53,102)(40,89,54,103)(41,90,55,104)(42,91,56,105), (1,36,15,50)(2,51,16,37)(3,38,17,52)(4,53,18,39)(5,40,19,54)(6,55,20,41)(7,42,21,56)(8,29,22,43)(9,44,23,30)(10,31,24,45)(11,46,25,32)(12,33,26,47)(13,48,27,34)(14,35,28,49)(57,91,71,105)(58,106,72,92)(59,93,73,107)(60,108,74,94)(61,95,75,109)(62,110,76,96)(63,97,77,111)(64,112,78,98)(65,99,79,85)(66,86,80,100)(67,101,81,87)(68,88,82,102)(69,103,83,89)(70,90,84,104) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(2,28),(3,27),(4,26),(5,25),(6,24),(7,23),(8,22),(9,21),(10,20),(11,19),(12,18),(13,17),(14,16),(29,36),(30,35),(31,34),(32,33),(37,56),(38,55),(39,54),(40,53),(41,52),(42,51),(43,50),(44,49),(45,48),(46,47),(57,73),(58,72),(59,71),(60,70),(61,69),(62,68),(63,67),(64,66),(74,84),(75,83),(76,82),(77,81),(78,80),(85,106),(86,105),(87,104),(88,103),(89,102),(90,101),(91,100),(92,99),(93,98),(94,97),(95,96),(107,112),(108,111),(109,110)], [(1,65,15,79),(2,66,16,80),(3,67,17,81),(4,68,18,82),(5,69,19,83),(6,70,20,84),(7,71,21,57),(8,72,22,58),(9,73,23,59),(10,74,24,60),(11,75,25,61),(12,76,26,62),(13,77,27,63),(14,78,28,64),(29,106,43,92),(30,107,44,93),(31,108,45,94),(32,109,46,95),(33,110,47,96),(34,111,48,97),(35,112,49,98),(36,85,50,99),(37,86,51,100),(38,87,52,101),(39,88,53,102),(40,89,54,103),(41,90,55,104),(42,91,56,105)], [(1,36,15,50),(2,51,16,37),(3,38,17,52),(4,53,18,39),(5,40,19,54),(6,55,20,41),(7,42,21,56),(8,29,22,43),(9,44,23,30),(10,31,24,45),(11,46,25,32),(12,33,26,47),(13,48,27,34),(14,35,28,49),(57,91,71,105),(58,106,72,92),(59,93,73,107),(60,108,74,94),(61,95,75,109),(62,110,76,96),(63,97,77,111),(64,112,78,98),(65,99,79,85),(66,86,80,100),(67,101,81,87),(68,88,82,102),(69,103,83,89),(70,90,84,104)]])

C28.C23 is a maximal subgroup of
D28.6D4  D28.7D4  C425D14  D28.15D4  C56.44D4  C56.29D4  D28.39D4  D28.40D4  D28.29D4  D28.30D4  D7×C8.C22  D56⋊C22  C28.C24  D28.34C23  D28.35C23
C28.C23 is a maximal quotient of
C4.Dic7⋊C4  C4○D28⋊C4  (C2×C14).40D8  C4⋊C4.231D14  Q8.3Dic14  C42.56D14  Q8.1D28  C42.59D14  C14.(C4○D8)  D28.37D4  C7⋊C86D4  C7⋊C8.6D4  C42.76D14  C42.77D14  C285SD16  C42.80D14  D286Q8  C42.82D14  C28⋊Q16  Dic146Q8  (Q8×C14)⋊6C4  (C7×Q8)⋊13D4  (C2×C14)⋊8Q16

41 conjugacy classes

class 1 2A2B2C4A4B4C4D4E7A7B7C8A8B14A···14I28A···28R
order1222444447778814···1428···28
size1122822442822228282···24···4

41 irreducible representations

dim111111222222244
type+++++++++++-
imageC1C2C2C2C2C2D4D4D7D14D14C7⋊D4C7⋊D4C8.C22C28.C23
kernelC28.C23C4.Dic7Q8⋊D7C7⋊Q16C4○D28Q8×C14C28C2×C14C2×Q8C2×C4Q8C4C22C7C1
# reps112211113366616

Matrix representation of C28.C23 in GL4(𝔽113) generated by

16211124
502724111
227686111
101226397
,
1038900
1031000
941001120
40100891
,
19559081
91141990
16379958
75162294
,
60651622
84894616
38842448
69382953
G:=sub<GL(4,GF(113))| [16,50,22,101,2,27,76,22,111,24,86,63,24,111,111,97],[103,103,94,40,89,10,100,100,0,0,112,89,0,0,0,1],[19,91,16,75,55,14,37,16,90,19,99,22,81,90,58,94],[60,84,38,69,65,89,84,38,16,46,24,29,22,16,48,53] >;

C28.C23 in GAP, Magma, Sage, TeX

C_{28}.C_2^3
% in TeX

G:=Group("C28.C2^3");
// GroupNames label

G:=SmallGroup(224,137);
// by ID

G=gap.SmallGroup(224,137);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,103,218,188,86,579,159,69,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^28=b^2=1,c^2=d^2=a^14,b*a*b=a^-1,a*c=c*a,d*a*d^-1=a^15,b*c=c*b,d*b*d^-1=a^21*b,d*c*d^-1=a^14*c>;
// generators/relations

׿
×
𝔽